Math, asked by SadiyaSyed, 1 year ago

show that (1,2), (3,-4), (5,-6), (19,8) are concyclic and also find equation of the circle


SadiyaSyed: plzz answer my question

Answers

Answered by Deepsbhargav
73
=================
YOUR ANSWER IS ☞
=================

let's equation of the circle =>

=> [ x²+y²+2gx+2fy+c = 0 ]

Now,

put the point in equation of circle

_______
1st => (1,2)

=> 1²+2²+2g(1)+2f(2)+c = 0

=> 5+2g+4f+c = 0

=> 2g+4f+5+c = 0 ________eq(1)

_________
2nd => (3,-4)

=> 3²+(-4)²+2g(3)+2f(-4)+c = 0

=> 9+16+6g-8f+c = 0

=> 6g-8f+25+c = 0 ________eq(2)

_________
3rd => (5,-6)

=> 5²+(-6)²+2g(5)+2f(-6)+c = 0

=> 25+36+10g-12f+c = 0

=> 10g-12f+61+c = 0. ________eq(3)

Now,

_______

by, 2×(eq(1)) + eq(2)

we get..

=> 10g+35+3c = 0 _______eq(4)

_________

by, 3×eq(1) + eq(3)

we get

=> 16g+76+4c = 0 _______eq(5)

_________

by, 3×(eq(5)) - 4×eq(4)

we get

=> 8g + 88 = 0

=> g = -11 _______eq(6)

plug the value of "g" in eq(4)

we get

=> 10(-11)+35+2c = 0

=> -110+35+3c = 0

=> 3c = 75

=> c = 25 __________eq(7)

_________

for "f"

plug the value of "g" and "f" in eq(1)

we get

=> 2(-11)+4f+5+25 = 0

=> 4f+8 = 0

=> f = -2 _____eq(8)

then
_________

equation of circle is

x²+y²-22x-4y+25 = 0



===============
hope it help you ☺
===============

DEVIL_KING ▄︻̷̿┻̿═━一

Deepsbhargav: wello
SadiyaSyed: ok
SadiyaSyed: tq
Shubhendu8898: great!!
SadiyaSyed: hmm!!
Deepsbhargav: thank you.... brainly stars team... for helping me...
SadiyaSyed: is this correct solution
Deepsbhargav: thank you... sadiyasyed
SadiyaSyed: but its not full solution
Deepsbhargav: hmm.. I know.. but time limit..
Answered by ChitranjanMahajan
6

(1,2), (3,-4), (5,-6), (19,8) are concyclic and equation of circle is x²+y²-22x-4y+25=0

Given,

(1,2), (3,-4), (5,-6), (19,8)

To find,

Show that (1,2), (3,-4), (5,-6), (19,8) are concyclic and also find equation of the circle

Solution,

let the equation of the circle be x²+y²+2gx+2fy+c = 0

Now,

put the point in equation of circle

1st => (1,2)

=> 1²+2²+2g(1)+2f(2)+c = 0

=> 5+2g+4f+c = 0

=> 2g+4f+5+c = 0                                            -(1)

2nd => (3,-4)

=> 3²+(-4)²+2g(3)+2f(-4)+c = 0

=> 9+16+6g-8f+c = 0

=> 6g-8f+25+c = 0                                           -(2)

3rd => (5,-6)

=> 5²+(-6)²+2g(5)+2f(-6)+c = 0

=> 25+36+10g-12f+c = 0

=> 10g-12f+61+c = 0                                          -(3)

Now,

by, 2×(1) + (2), we get

=> 10g+35+3c = 0                                             -(4)

by, 3x(1) + (3), we get

=> 16g+76+4c = 0                                              -(5)

by, 3x(5) - 4×(4),we get

=> 8g + 88 = 0

=> g = -11                                                             -(6)

putting the value of "g" in (4), we get

=> 10(-11)+35+2c = 0

=> -110+35+3c = 0

=> 3c = 75

=> c = 25                                                             -(7)

for "f"

putting the value of "g" and "f" in (1), we get

=> 2(-11)+4f+5+25 = 0

=> 4f+8 = 0

=> f = -2                                                               -(8)

then

equation of circle is x²+y²-22x-4y+25 = 0

#SPJ3

Similar questions