Math, asked by s1889shuvradeep6356, 1 month ago

Show that 1/2 and -3/2 are the zeroes of the polynomial 4x 2 +4x-3 and verify the relationship between zeroes and coefficients of polynomials.​

Answers

Answered by ridhya77677
1

Answer:

let \:  \alpha  \: and \:  \beta  \: be \: the \: zeroes \: of \: the \: polynomial. \\ 4{x}^{2}  + 4x - 3 = 0 \\  4{x}^{2}   + 6x - 2x  - 3 = 0 \\ 2x(2x + 3) - (2x + 3) = 0 \\ (2x - 1)(2x + 3) = 0  \\ x =  \frac{1}{2} ,  \frac{ - 3}{2} \\  \alpha  =  \frac{1}{2} , \beta  =  \frac{ - 3}{2} \\  \alpha  +  \beta  =   \frac{ - b}{a}  \\ lhs ,  \alpha  +  \beta  =  \frac{1}{2} +  \frac{ - 3}{2}  =  - 1 \\rhs , \frac{ - b}{a}  =  \frac{ - 4}{4} =  - 1 \\  =  >  \alpha  +  \beta = 1 \\

and \\  \alpha  \beta  =  \frac{1}{2}  \times  \frac{ - 3}{2}  =  \frac{ - 3}{4}  \\  \frac{c}{a}  =  \frac{ - 3}{4}  \\  =  >  \alpha  \beta  =  \frac{c}{a} [/tex]

Similar questions