Show that
1) (2a-5)² + 40a =(2a+5)²
Answers
Answered by
1
Equating LHS
= (2a - 5)^2 + 40a
= 4a^2 + 25 - 20a + 40a
= 4a^2 + 25 + 20a
= (2a + 5)^2
Proved
= (2a - 5)^2 + 40a
= 4a^2 + 25 - 20a + 40a
= 4a^2 + 25 + 20a
= (2a + 5)^2
Proved
Answered by
2
(2a-5)²+40 → L.H.S.
=(2a)²+(5)²+2(2a)(-5)+40a
=(2a)²+(5)²-20a+40a
=(2a)²+(5)²+20a
=(2a)²+(5)²+2(2a)(5)
=(2a+5)² → R.HS.
=(2a)²+(5)²+2(2a)(-5)+40a
=(2a)²+(5)²-20a+40a
=(2a)²+(5)²+20a
=(2a)²+(5)²+2(2a)(5)
=(2a+5)² → R.HS.
Similar questions