Show that:
1/(3-√8) + 1/(√7-√6) +1/(√5-2) - 1/√8-√7 -1/(√6-√5) =5
Answers
Answer:
there is no answer . only proving Question
Step-by-step explanation:
first of all rationalise the L.H.S side . we get
=> 1/3-√8 × 3+√8/3+√8
=> 3+√8/9-8
=> 3+√8
similarly rationalise all the terms . we get
√7+√6 , √5+2 , √8+√7 and √6+√5.
now putting these values in the L.H.S side
=>(3+√8)+(√7+√6)+(√5+2)-(√8+√7)-(√6+√5)
=> 3+√8+√7+√6+√5+2-√8-√7-√6-√5
by canceling the numbers
we get
=>3+2
=>5
L.H.S=R.H.S
Hence proved
Step-by-step explanation:
at the beginning of this question we have to know the root values
√8=2.828
√6=2.449
√5=2.236
√7=2.645
let us enter into the question
1/(3-√8)=1/(3-2.28)=1/(0.72)=1.389
1/(√7-√6)=1/(2.645-2.449)=1/(0.196)=5.102
1/(√5-2)=1/(2.236-2)=1/(0.236)=4.237
1/(√8-√7)=1/(2.828-2.645)=1/(0.183)=5.464
1/(√6-√5) =1/(2.449-2.236)=1/(0.213)=4.694
there fore the final answer =1.389 + 5.102 + 4.237 - 5.464 - 4.694 = 5.2 =5(approx)