Math, asked by shalehadewan2, 6 months ago

show that 1÷(3_√8)-1÷(√8-√7)+1÷(√7-√6)-1(√6-√5)+1(√5-2)=5​

Answers

Answered by bighnes87
0

{\huge{\pink{\underbrace{\overbrace{\mathbb{\blue{ANSWER:-}}}}}}}

We should show,

\frac{1}{3-\sqrt{8} } -\frac{1}{\sqrt{8}-\sqrt{7} } -\frac{1}{\sqrt{7}-\sqrt{6}  }-\frac{1}{\sqrt{6}-\sqrt{5}  }-\frac{1}{\sqrt{5}-2 } =5

Proof:-

First, We should rationalize all denominators:-

\frac{1}{3-\sqrt{8} }\times\frac{3+\sqrt{8} }{3+\sqrt{8} } =3+\sqrt{8}

\frac{1}{\sqrt{8}-\sqrt{7}  } \times \frac{\sqrt{8}+\sqrt{7}  }{\sqrt{8}+\sqrt{7}  }=\sqrt{8}+\sqrt{7}

Similarly,

√7+√6

√6+√5

√5+2

So, now we should so,

3+√8-(√8-√7)-(√7-√6)-(√6-√5)-(√5-2)=5

3+√8-√8+√7-√7+√6-√6+√5-√5+2=5

3+2=5

5=5

LHS=RHS

HENCE PROOVED

FOLLOW ME

Similar questions