Math, asked by manveersingh16, 1 month ago

Show that 1/3√8-1/√8-√7-1/√7-√6-1/√6-√5-1/√5+2 = 5
please give answer fast​

Answers

Answered by TYKE
14

Correct Question :

 \sf \small   \frac{1}{3- \sqrt{8} }  -  \frac{1}{ \sqrt{8}  -\sqrt{7} }  +  \frac{1}{ \sqrt{7}  -  \sqrt{6} }  -  \frac{1}{ \sqrt{6}  -  \sqrt{5} }  + \frac{1}{ \sqrt{5}  - 2}  = 5

For solving this we need to use the concept of rationalisation

Rationalisation :

  • Rationalisation is a process by which radicals in the denominator of an algebraic fraction are eliminated.

  • However, except in special cases, the resulting fractions may have huge numerators and denominators, and, therefore, the technique is generally used only in the above elementary cases.

Solution :

 \sf \small   \frac{1}{3- \sqrt{8} }  -  \frac{1}{ \sqrt{8}  - \sqrt{7} }  + \frac{1}{ \sqrt{7}  -  \sqrt{6} }  -  \frac{1}{ \sqrt{6}  -  \sqrt{5} }  + \frac{1}{ \sqrt{5}  - 2}  = 5

 \rarr  \tiny\frac{1}{3 -\sqrt{8} }  -  \frac{1( \sqrt{8} +  \sqrt{7} ) }{( \sqrt{8} -  \sqrt{7})( \sqrt{8} +  \sqrt{7} )} + \frac{1( \sqrt{7} +  \sqrt{6}  )}{( \sqrt{7}  -  \sqrt{6} )( \sqrt{7} +  \sqrt{6}  )}   -  \frac{1( \sqrt{6}  +  \sqrt{5} )}{( \sqrt{6}  -  \sqrt{5} )( \sqrt{6} +  \sqrt{5})  }  +  \frac{1( \sqrt{5} + 2) }{( \sqrt{5}  - 2)( \sqrt{5} +2) }  = 5

  \rarr\small\frac{3+\sqrt{8}}{(3)² -(\sqrt{8} )^{2} }  -  \frac{ \sqrt{8} +  \sqrt{7}  }{ {( \sqrt{8}) }^{2}  - ( \sqrt{7} )^{2} }  + \frac{ \sqrt{7}   +  \sqrt{6} }{ {( \sqrt{7} )}^{2} -  {( \sqrt{6} )}^{2}  }  -  \frac{ \sqrt{6}  +  \sqrt{5} }{ {( \sqrt{6}) }^{2} - ( \sqrt{5})^{2} } +  \frac{ \sqrt{5} + 2 }{ {( \sqrt{5}) }^{2}  -  {(2)}^{2} }  = 5

 \rarr \small \frac{ 3+\sqrt{8} }{9-8}  -  \frac{ \sqrt{8}  +  \sqrt{7}  }{8 - 7}  -  \frac{ \sqrt{7}  +  \sqrt{6} }{7 - 6}  + \frac{ \sqrt{6} +  \sqrt{5}  }{6 - 5}  +  \frac{ \sqrt{5}  +2}{5 - 4}  = 5

 \rarr \frac{3+ \sqrt{8} }{1}  -  \frac{ \sqrt{8} +  \sqrt{7}  }{1}  -  \frac{ \sqrt{7}  +  \sqrt{6}  }{1}   \frac{ \sqrt{6} +  \sqrt{5}  }{1}  + \frac{ \sqrt{5}  +2}{1}  = 5

 \rarr \small3 +  \sqrt{8}  -  \sqrt{8}   +   \sqrt{7}   -  \sqrt{7}  +  \sqrt{6}  -  \sqrt{6}  -  \sqrt{5}  + \sqrt{5}   + 2 = 5

 \rarr \small3 + 2 = 5

\rarr \small5 = 5

Hence Verified !!

Similar questions