Show that 1/(3-√8) - 1/(√8-√7) + 1/(√7-√6) - 1/(√6-√5) + 1/(√7-6)=5
Answers
Answered by
4
Step-by-step explanation:
1/(3 - √8) = 1/(3 - √8) / (3 + √8) / (3+ √8)
= (3 + √8) / (3)^2 - (√8)^2
= (3 + √8)
1/(√8-√7) = 1/(√8-√7) * (√8+√7)/(√8+√7)
= (√8+√7) / (√8)^2 - (√7)^2
= (√8 + √7)
similarly,
1/(√7 - √6) = (√7 + √6)
1/(√6 - √5) = (√6 + √5)
1/(√7 - 6) = (√7 + 6)
Now,
===) (3 + √8) - (√8 + √7) - (√7 + √6) - (√6 + √5) + (√7 + 6) = 5
===) 3 + √8 - √8 - √7 - √7 - √6 - √6 - √5 + √7 + 6 = 5
===) 3 + 6 = 5
===) 9 = 5
So, the equation is not equal to 5.
I hope, it will help you .
Similar questions