Show that (-1+√3i)^3 is a real number.
Answers
Answered by
224
(√3 i - 1)³
using the formula
(a - b)³ = a³ - b³ - 3 a²b + 3 ab²
expanding the cube
(√3)³ i³ - 1³ - 3 (√3 i)² (1) + 3 (√3 i) (1)²
- 3√3 i - 1 - 9 i² + 3√3 i
- 3√3 i - 1 - 9 (-1) + 3√3 i (Since i² = - 1)
- 3√3 i - 1 + 9 + 3√3 i
8
hence proved
Answered by
150
Answer:
Yes (-1+√3i)^3 is a real number that is 8
Explanation:
We know the (a + b)³ = (a + b)(a + b)(a + b)
In (-1+√3i)³ , a = -1 & b = i√3
(-1+√3i)³ = (-1 + i√3)(-1 + i√3)(-1 + i√3)
(-1+√3i)³ = (1 - 3 - 2i√3)(-1 + i√3)
(-1+√3i)³ = (-2 - 2i√3)(-1 + i√3)
(-1+√3i)³ = -2(1 + i√3)(-1 + i√3)
(-1+√3i)³ = -2 (-1 - 3)
(-1 + i√3)³ = -2 (-4)
(-1 + i√3)³ = 8
8 is real number.
That's the final answer. I hope it will help you.
Similar questions
English,
7 months ago
English,
7 months ago
Geography,
7 months ago
Computer Science,
1 year ago
Chemistry,
1 year ago