show that |1 a a³| |1 b b³| |1 c c³|=(a-b)(b-c)(c-a)
Answers
Answer:
Given : \begin{gathered}\left[\begin{array}{ccc}1&a&a^3\\1&b&b^3\\1&c&c^3\end{array}\right]\end{gathered}⎣⎢⎡111abca3b3c3⎦⎥⎤
To find : Prove that given = (a - b)(b-c)(c-a)(a + b + )
Solution:
\begin{gathered}\left[\begin{array}{ccc}1&a&a^3\\1&b&b^3\\1&c&c^3\end{array}\right] =(a - b)(b-c)(c-a)(a + b + )\end{gathered}⎣⎢⎡111abca3b3c3⎦⎥⎤=(a−b)(b−c)(c−a)(a+b+)
LHS
= \begin{gathered}\left[\begin{array}{ccc}1&a&a^3\\1&b&b^3\\1&c&c^3\end{array}\right]\end{gathered}⎣⎢⎡111abca3b3c3⎦⎥⎤
= bc³ - cb³ - a(c³ - b³) + a³(c - b)
= bc(c² - b²) - a(c - b)(b² + c² + bc) + a³(c - b)
= bc(c + b)(c - b) - a(c - b)(b² + c² + bc) + a³(c - b)
= (c - b) ( bc(c + b) - a(b² + c² + bc) + a³ )
= (c - b) ( bc² + b²c - ab² - ac² - abc + a³ )
= (c - b)(bc² - ac² + b²c - abc + a³ - ab²)
= (c - b)(c²(b - a) + bc(b - a) + a(a² - b²))
= (c - b)(c²(b - a) + bc(b - a) + a(a+b)(a - b))
= (c - b)(b - a)( c² + bc - a(a + b))
= (b - c)(a - b) (c² + bc - a² - ab)
= (b - c)(a - b) (c² - a² + bc - ab)
= (b - c)(a - b) ((c + a)(c - a) + b(c - a))
= (b - c)(a - b) ( (c - a) ((c + a) + b))
= (a - b)(b-c)(c - a)(a + b + c)
= RHS