Math, asked by bilagunjinagarajr, 11 months ago

show that 1/b+c' 1/c+a' 1/a+b are in AP​

Answers

Answered by Nikhil0204
1

\large\red{ANSWER} \\

 \frac{1}{b + c}  \:  \:  \:  \frac{1}{c + a}  \:  \:  \:  \frac{1}{a + b}  \\  \\ a =  \frac{1}{b + c}  \\  \\ d \: 1 =  \frac{1}{c + a}  -  \frac{1}{b + c}  \\  \:  \:  =  \frac{b + c - c - a}{(c + a)(b + c)} \\  \:  \:  =  \frac{b - a}{cb +  {c}^{2} + ab + ac }  \\  \\  \\ d \: 2 =  \frac{1}{a + b}  -  \frac{1}{c + a}  \\  \:  \:  =  \frac{c + a - a - b}{(a + b)(c + a)}  \\  \:  \:  =  \frac{c - b}{ac +  {a}^{2} + ab + bc }  \\

If these given 3 numbers are an AP

then,

d 1 =d 2

 \frac{b - a}{cb +  {c}^{2} + ab + ac }  =  \frac{c - b}{ac +  {a}^{2}  + ab + bc}  \\(b - a)(ac +  {a}^{2}  + ab + bc) = (c - b)(cb +  {c}^{2}   + ab + ac) \\

at the end we will get

2 +  \frac{a}{c}  +  \frac{c}{a}  = 2 +  \frac{c}{a}  +  \frac{a}{c}  \\ lhs =  \: rhs

\large\blue{HENCE\:PROVEN\:THAT\:IT\:IS\:AN\:A.P} \\

HOPE THIS HELPS YOU!!!!!!!

PLEASE MARK IT AS BRAINLIST!!!!!!!

Similar questions