show that 1/ cos theta - cos theta= tan theta - sin theta
Answers
Answer:
Above is the Answer for your solution
Step-by-step explanation:
l hope you have understood
Correct Question:
1 / cos θ - cos θ = tan θ . sin θ
Answer:
1 / cos θ - cos θ = tan θ . sin θ
Step-by-step-explanation:
We have to show that, 1 / cos θ - cos θ = tan θ . sin θ.
We can prove this equation by considering LHS of the equation.
LHS = 1 / cos θ - cos θ
LHS = ( 1 - cos² θ ) / cos θ
LHS = sin² θ / cos θ - - [ ∵ sin² θ + cos² θ = 1 ]
LHS = sin θ × sin θ / cos θ
LHS = sin θ / cos θ × sin θ
LHS = tan θ . sin θ - - [ ∵ tan θ = sin θ / cos θ ]
∴ LHS = RHS
Hence shown!
─────────────────────
We can prove the given equation by considering RHS of the equation.
RHS = tan θ . sin θ
RHS = sin θ / cos θ × sin θ - - [ ∵ tan θ = sin θ / cos θ ]
RHS = sin θ × sin θ / cos θ
RHS = sin² θ / cos θ
RHS = ( 1 - cos² θ ) / cos θ - - [ ∵ sin² θ + cos² θ = 1 ]
RHS = 1 / cos θ - cos² θ / cos θ - - [ Separating the denominator ]
RHS = 1 / cos θ - cos θ
∴ RHS = LHS
Hence shown!
─────────────────────
Additional Information:
Basic Trigonometric Identities:
1. tan θ = sin θ / cos θ
2. sin² θ + cos² θ = 1
3. 1 + tan² θ = sec² θ
4. 1 + cot² θ = cosec² θ