show that 1/ cos theta - cos theta= tan theta - sin theta
Answers
Step-by-step explanation:
please please please please please
give me thanks plz
and Mark me brain least
pl mark kar doo
all doing thanks but not doing brain least
please please mark me brain least
❥ 1 / cos θ - cos θ = tan θ . sin θ
❥ 1 / cos θ - cos θ = tan θ . sin θ
❥ We have to show that, 1 / cos θ - cos θ = tan θ . sin θ.
❧ We can prove this equation by considering LHS of the equation.
❥ LHS = 1 / cos θ - cos θ
❥ LHS = ( 1 - cos² θ ) / cos θ
❥ LHS = sin² θ / cos θ - - [ ∵ sin² θ + cos² θ = 1 ]
❥ LHS = sin θ × sin θ / cos θ
❥ LHS = sin θ / cos θ × sin θ
❥ LHS = tan θ . sin θ - - [ ∵ tan θ = sin θ / cos θ ]
∴ LHS = RHS
ྉ Hence proved
▩━━━━━━◈━━━━━━▩
❧ We can prove the given equation by considering RHS of the equation.
❥ RHS = tan θ . sin θ
❥ RHS = sin θ / cos θ × sin θ - - [ ∵ tan θ = sin θ / cos θ ]
❥ RHS = sin θ × sin θ / cos θ
❥ RHS = sin² θ / cos θ
❥ RHS = ( 1 - cos² θ ) / cos θ - - [ ∵ sin² θ + cos² θ = 1 ]
❥ RHS = 1 / cos θ - cos² θ / cos θ - - [ Separating the denominator ]
❥ RHS = 1 / cos θ - cos θ
∴ RHS = LHS
Hence proved
▩━━━━━━◈━━━━━━▩
ྉ Trigonometric Identities:
1. tan θ = sin θ / cos θ
2. sin² θ + cos² θ = 1
3. 1 + tan² θ = sec² θ
4. 1 + cot² θ = cosec² θ
◈ ━━━━━━━ ◆ ━━━━━━━ ◈