Math, asked by Wanderersouls, 6 months ago

show that 1/ cos theta - cos theta= tan theta - sin theta​

Answers

Answered by divyasolanki7166
1

Step-by-step explanation:

please please please please please

give me thanks plz

and Mark me brain least

pl mark kar doo

all doing thanks but not doing brain least

please please mark me brain least

Answered by Anonymous
105

\Large{\underline{\underline{\bf{Correct Question:-}}}}

❥ 1 / cos θ - cos θ = tan θ . sin θ

\Large{\underline{\underline{\bf{AnSweR:-}}}}

❥ 1 / cos θ - cos θ = tan θ . sin θ

\Large{\underline{\underline{\bf{SoLuTion:-}}}}

❥ We have to show that, 1 / cos θ - cos θ = tan θ . sin θ.

❧ We can prove this equation by considering LHS of the equation.

❥ LHS = 1 / cos θ - cos θ

❥ LHS = ( 1 - cos² θ ) / cos θ

❥ LHS = sin² θ / cos θ - - [ ∵ sin² θ + cos² θ = 1 ]

❥ LHS = sin θ × sin θ / cos θ

❥ LHS = sin θ / cos θ × sin θ

❥ LHS = tan θ . sin θ - - [ ∵ tan θ = sin θ / cos θ ]

∴ LHS = RHS

ྉ Hence proved

▩━━━━━━◈━━━━━━▩

❧ We can prove the given equation by considering RHS of the equation.

❥ RHS = tan θ . sin θ

❥ RHS = sin θ / cos θ × sin θ - - [ ∵ tan θ = sin θ / cos θ ]

❥ RHS = sin θ × sin θ / cos θ

❥ RHS = sin² θ / cos θ

❥ RHS = ( 1 - cos² θ ) / cos θ - - [ ∵ sin² θ + cos² θ = 1 ]

❥ RHS = 1 / cos θ - cos² θ / cos θ - - [ Separating the denominator ]

❥ RHS = 1 / cos θ - cos θ

∴ RHS = LHS

Hence proved

▩━━━━━━◈━━━━━━▩

\Large{\underline{\underline{\bf{Additional Information:-}}}}

ྉ Trigonometric Identities:

1. tan θ = sin θ / cos θ

2. sin² θ + cos² θ = 1

3. 1 + tan² θ = sec² θ

4. 1 + cot² θ = cosec² θ

◈ ━━━━━━━ ◆ ━━━━━━━ ◈

Similar questions