show that 1/ cos theta - cos theta= tan theta - sin theta
Answers
Step-by-step explanation:
SWER
Consider the L.H.S
sinθ+cosθ−1sinθ−cosθ+1
=(sinθ+cosθ−1sinθ−cosθ+1)×(sinθ+cosθ+1sinθ+cosθ+1)
=(sinθ+cosθ−1sinθ+1−cosθ)×(sinθ+cosθ+1sinθ+1+cosθ)
=(sinθ+cosθ)2−12(sinθ+1)2−cos2θ
=sin2θ+cos2θ+2sinθcosθ−1sin2θ+1+2sinθ−cos2θ
Since, sin2θ+cos2θ=1
Therefore,
=1+2sinθcosθ−11−cos2θ+1+2sinθ
❥ 1 / cos θ - cos θ = tan θ . sin θ
❥ 1 / cos θ - cos θ = tan θ . sin θ
❥ We have to show that, 1 / cos θ - cos θ = tan θ . sin θ.
❧ We can prove this equation by considering LHS of the equation.
❥ LHS = 1 / cos θ - cos θ
❥ LHS = ( 1 - cos² θ ) / cos θ
❥ LHS = sin² θ / cos θ - - [ ∵ sin² θ + cos² θ = 1 ]
❥ LHS = sin θ × sin θ / cos θ
❥ LHS = sin θ / cos θ × sin θ
❥ LHS = tan θ . sin θ - - [ ∵ tan θ = sin θ / cos θ ]
∴ LHS = RHS
ྉ Hence proved
▩━━━━━━◈━━━━━━▩
❧ We can prove the given equation by considering RHS of the equation.
❥ RHS = tan θ . sin θ
❥ RHS = sin θ / cos θ × sin θ - - [ ∵ tan θ = sin θ / cos θ ]
❥ RHS = sin θ × sin θ / cos θ
❥ RHS = sin² θ / cos θ
❥ RHS = ( 1 - cos² θ ) / cos θ - - [ ∵ sin² θ + cos² θ = 1 ]
❥ RHS = 1 / cos θ - cos² θ / cos θ - - [ Separating the denominator ]
❥ RHS = 1 / cos θ - cos θ
∴ RHS = LHS
Hence proved
▩━━━━━━◈━━━━━━▩
ྉ Trigonometric Identities:
1. tan θ = sin θ / cos θ
2. sin² θ + cos² θ = 1
3. 1 + tan² θ = sec² θ
4. 1 + cot² θ = cosec² θ
◈ ━━━━━━━ ◆ ━━━━━━━ ◈