Math, asked by Dharanibojja11, 9 months ago

show that 1/cos tita-cos tita=tan tita*sin tita​

Answers

Answered by ksonakshi70
1

Answer:

 \frac{1}{ \cos( \alpha ) }  -  \cos( \alpha )  =  \tan( \alpha )  \sin( \alpha )  \\ lhs =  \frac{1}{ \cos( \alpha ) }  -  \cos( \alpha )  \\  =  \frac{1 -  { \cos( \alpha ) }^{2} }{ \cos( \alpha ) }  \\  =  \frac{ { \sin( \alpha ) }^{2} }{ \cos( \alpha ) }  \\  =  \tan( \alpha )  \sin( \alpha )

Answered by mohinijames
3

Step-by-step explanation:

1/cosA-cosA=1-cis^2A/cosA

=sin^2A/cosA

=sinA*TanA

hence proved.

Similar questions