Show that 1/(cosecA-cotA) - 1/sinA = 1/sinA - 1/(cosecA+cotA).
No spam please help me....
Answers
Answered by
3
Step-by-step explanation:
(1/cosecA-cotA)-(1/sinA)
={1/(1/sinA-cosA/sinA)}-(1/sinA)
=[1/{(1-cosA)/sinA}]-(1/sinA)
=sinA/(1-cosA)-(1/sinA)
=(sin²A-1+cosA)/sinA(1-cosA)
={(1-cos²A)-(1-cosA)}/sinA(1-cosA)
={(1+cosA)(1-cosA)-(1-cosA)}/sinA(1-cosA)
=(1-cosA)(1+cosA-1)/sinA(1-cosA)
=cosA/sinA
=cotA
RHS
(1/sinA)-(1/cosecA+cotA)
=(1/sinA)-{1/(1/sinA+cosA/sinA)}
=(1/sinA)-1/{(1+cosA)/sinA}
=(1/sinA)-sinA/(1+cosA)
=(1+cosA-sin²A)/sinA(1+cosA)
={1+cosA-(1-cos²A)}/{sinA(1+cosA)}
={(1+cosA)-(1+cosA)(1-cosA)}/{sinA(1+cosA)}
=(1+cosA)(1-1+cosA)/sinA(1+cosA)
=cosA/sinA
=cotA
LHS = RHS
hence proved
Answered by
3
Step by step explation:
LHS=RHS (verified)..
Please mark me as the brain list and follow me
Attachments:
Similar questions
English,
2 months ago
Hindi,
2 months ago
India Languages,
5 months ago
Social Sciences,
5 months ago
Chemistry,
11 months ago
English,
11 months ago