Math, asked by BangtanArmy94, 4 months ago

show that (1 + cot^2 A) (1 - cos A) (1 + cos A) = 1​

Answers

Answered by surbhijyoti0
1

Step-by-step explanation:

i hope this is helpful for you

Attachments:
Answered by Anonymous
0

Step-by-step explanation:

(1 +  {cot}^{2} a)(1 - cos \: a)(1 + cos \: a) \\  \\  = (1  + cot ^{2} a)(1 -  {cos}^{2} a) \\  \\  = 1 -  {cos}^{2} a  + {cot}^{2} a -  {cot}^{2} a. {cos}^{2} a \\  \\  = 1 -  {cos}^{2} a +  \frac{ {cos}^{2} a}{ {sin}^{2} a}  -  \frac{ {cos}^{2} a}{sin ^{2}a } .{cos}^{2} a \\  \\  =  \frac{ {sin}^{2} a -  {cos}^{2} a. {sin}^{2} a +  {cos}^{2}a -  {cos}^{4} a }  { {sin}^{2} a}  \\  \\  =  \frac{ {sin}^{2}a +  {cos}^{2}a -  {cos}^{2} a {sin}^{2} a -  {cos}^{4}  a }{ {sin}^{2} a}  \\  \\  =  \frac{1 -  {cos}^{2}a( {sin}^{2}a +  {cos}^{2}  a) }{ {sin}^{2} a}  \\  \\  =  \frac{1 -  {cos}^{2} a}{ {sin}^{2} a}  \\  \\  =  \frac{ {sin}^{2}a }{ {sin}^{2} a}  \\  \\  = 1 (proved)\\  \\  \\  \\ formula  - \:  \:  \:  \: cot \: a \:  =  \frac{cos \: a}{sin \: a}  \\  \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   {sin}^{2} a +  {cos}^{2} a = 1 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 1 -  {cos}^{2} a  =  {sin}^{2} a

Similar questions