show that ( 1+ cotθ - cosecθ ) * ( 1 + tanθ + secθ ) = 2
sijinsdaniel:
hurry up
Answers
Answered by
9
[1+(cosФ/sinФ)-(1/sinФ)] [1+(sinФ/cosФ)+(1/cosФ)] (∵cotФ=cosФ/sinФ ) (∵tanФ=sinФ/cosФ)
(∵cosecФ=1/sinФ)
(secФ=1/cosФ)
[(sinФ+cosФ)-1]/sinФ [(cosФ+sinФ)+1]/cosФ (∵(a-b) x (a+b) =a²-b² )
[(sinФ+cosФ)²-1²]/sinФ.cosФ
[sin²Ф+cos²Ф+2sinФ.cosФ-1]/sinФ.cosФ
[1+2sinФ.cosФ-1]/sinФ.cosФ
2sinФ.cosФ/sinФ.cosФ
2
(∵cosecФ=1/sinФ)
(secФ=1/cosФ)
[(sinФ+cosФ)-1]/sinФ [(cosФ+sinФ)+1]/cosФ (∵(a-b) x (a+b) =a²-b² )
[(sinФ+cosФ)²-1²]/sinФ.cosФ
[sin²Ф+cos²Ф+2sinФ.cosФ-1]/sinФ.cosФ
[1+2sinФ.cosФ-1]/sinФ.cosФ
2sinФ.cosФ/sinФ.cosФ
2
Answered by
30
(1 + tanθ + secθ)(1 + cot - cosecθ)
We know that :-
(sin²θ) + (cos² θ) = 1
★Hence we get :-
= 2
Similar questions