Math, asked by sijinsdaniel, 1 year ago

show that ( 1+ cotθ - cosecθ ) * ( 1 + tanθ + secθ ) = 2


sijinsdaniel: hurry up
sijinsdaniel: answer quickly
snsbhargav: i given answer bro
sijinsdaniel: thanks but check it once more with a teacher please
snsbhargav: why?
snsbhargav: ok i will give clear process
snsbhargav: lets be friends!

Answers

Answered by snsbhargav
9
[1+(cosФ/sinФ)-(1/sinФ)] [1+(sinФ/cosФ)+(1/cosФ)]         (∵cotФ=cosФ/sinФ )                                                                                                             (∵tanФ=sinФ/cosФ)
                                                                                    (∵cosecФ=1/sinФ)
                                                                                    (secФ=1/cosФ)
[(sinФ+cosФ)-1]/sinФ [(cosФ+sinФ)+1]/cosФ               (∵(a-b) x (a+b) =a²-b² )

[(sinФ+cosФ)²-1²]/sinФ.cosФ

[sin²Ф+cos²Ф+2sinФ.cosФ-1]/sinФ.cosФ

[1+2sinФ.cosФ-1]/sinФ.cosФ

2sinФ.cosФ/sinФ.cosФ

2


Answered by Anonymous
30

\textbf{\underline{\underline{According\:to\:the\:Question}}}

(1 + tanθ + secθ)(1 + cot - cosecθ)

\tt{\rightarrow (1+\dfrac{sin\theta}{cos\theta}+\dfrac{1}{cos\theta})(1+\dfrac{cos\theta}{sin\theta}-\dfrac{1}{sin\theta})}

\tt{\rightarrow(\dfrac{cos\theta+sin\theta+1}{cos\theta})(\dfrac{sin\theta+cos\theta-1}{sin\theta})}

\tt{\rightarrow\dfrac{(cos\theta+sin\theta)^{2}-1}{sin\tgeta\;cos\theta}}

\tt{\rightarrow\dfrac{(cos^2\theta+sin^2\theta)+2cos\thet\;sin\theta-1}{sin\theta\;cos\theta}}

We know that :-

(sin²θ) + (cos² θ) = 1

\tt{\rightarrow\dfrac{1+2cos\theta\;sin\theta-1}{sin\theta\;cos\theta}}

\tt{\rightarrow\dfrac{2cos\theta\;sin\theta}{sin\theta\;cos\theta}}

★Hence we get :-

= 2

\boxed{\begin{minipage}{10cm} Fundamental Trignometric Indentities \\ \\ $\sin^{2}\theta+\cos^{2}\theta =1 \\ \\ 1+tan^{2}\theta=\sec^{2}\theta \\ \\ 1 + cot^{2}\theta=\text{cosec}^2\theta \\ \\ tan\theta =\dfrac{sin\theta}{cos\theta} \\ \\ cot\theta =\dfrac{cos\theta}{sin\theta}$\end{minipage}}

Similar questions