show that
(1 + cot∅ - cosec ∅)(1+tan∅+sec∅)=2
Answers
Answered by
1
Answer:
hope this answer helped you
Step-by-step explanation:
(sin+cos)²=sin²+cos²+2sincos=1+2sincos
Attachments:
Answered by
0
Answer:
so LHS=RHS=2
Step-by-step explanation:
(1+cotØ-cosecØ) (1+tanØ+secØ)
= 1+tanØ+secØ+cotØ+cotØtanØ+cotØsecØ-cosecØ-cosec∅tanØ-cosecØsecØ
= 1+tanØ+secØ+cotØ+1+cosecØ-cosecØ-secØ-cosecØsecØ
= 1+1+tanØ+cotØ-cosecØsecØ
= 2+(sinØ/cosØ)+(cosØ/sinØ)-[1/(sinØcosØ)]
= 2+[(sin²Ø+cos²Ø)/(sinØcosØ)]-[1/(sinØcosØ)]
= 2+[1/(sinØcosØ)]-[1/(sinØcosØ)]
= 2+[(1-1)/(sinØcosØ)]
= 2+[0/(sinØcosØ)]
= 2+0
= 2
Hence Proved
Hope it helps, mark it as the brainliest answer
Similar questions