Math, asked by PinkPrincess06, 11 days ago

Show that (1+ cot teta)(1+tan teta + sec teta) =2

Answers

Answered by akash0107k
1

Answer:

2

Step-by-step explanation:

1+cotθ−cscθ)(1+tanθ+secθ)

=(1+

sinθ

cosθ

sinθ

1

)(1+

cosθ

sinθ

+

cosθ

1

)

=(

sinθ

sinθ+cosθ−1

)(

cosθ

cosθ+sinθ+1

)

=

sinθcosθ

(sinθ+cosθ)

2

−1

=

sinθcosθ

sin

2

θ+cos

2

θ+2sinθcosθ−1

=

sinθcosθ

1+2sinθcosθ−1

=

sinθcosθ

2sinθcosθ

=2

Answered by ncselvam9
0

Step-by-step explanation:

=1+cos/sin*1+sin/cos+1/cos

=sin+cos/sin*cos+sin/cos+1/cos

=sin+cos/sin*cos+sin+1/cos

=(sin+cos)(cos+sin+1)/sin.cos

=(sin.cos+sin2+sin+cos2+cos.sin+cos)/sin.cos

=2sincos+1+sin+cos)/sin.cos

=2sin.cos+2/sin.cos

=2(sin.cos)/sin.cos

=2

Similar questions