Show that (1+ cot teta)(1+tan teta + sec teta) =2
Answers
Answered by
1
Answer:
2
Step-by-step explanation:
1+cotθ−cscθ)(1+tanθ+secθ)
=(1+
sinθ
cosθ
−
sinθ
1
)(1+
cosθ
sinθ
+
cosθ
1
)
=(
sinθ
sinθ+cosθ−1
)(
cosθ
cosθ+sinθ+1
)
=
sinθcosθ
(sinθ+cosθ)
2
−1
=
sinθcosθ
sin
2
θ+cos
2
θ+2sinθcosθ−1
=
sinθcosθ
1+2sinθcosθ−1
=
sinθcosθ
2sinθcosθ
=2
Answered by
0
Step-by-step explanation:
=1+cos/sin*1+sin/cos+1/cos
=sin+cos/sin*cos+sin/cos+1/cos
=sin+cos/sin*cos+sin+1/cos
=(sin+cos)(cos+sin+1)/sin.cos
=(sin.cos+sin2+sin+cos2+cos.sin+cos)/sin.cos
=2sincos+1+sin+cos)/sin.cos
=2sin.cos+2/sin.cos
=2(sin.cos)/sin.cos
=2
Similar questions