Math, asked by abdallabinyahye, 8 months ago

show that
(1-i)^n (1 - 1/i)^n = 2^n
for all nEN​

Answers

Answered by aareejghaffarv
3

Step-by-step explanation:

LHS

(1 - i) ^n(1 -  \frac{1}{i} ) {}^{n} \\  ={((1 - i)(1 -   \frac{1}{i} ) } ){}^{n}  \\  = (1 -  \frac{1}{i}  - i  +   \frac{i}{i} ) ^{n}  \\  = (2 - ( \frac{1}{i}  + i)) ^{n} \\  = (2 - ( \frac{1 + i {}^{2} }{i} )) {}^{n} \\ =  (2  -( \frac{1 - 1}{i})) {}^{n}    \\ =(2 - 0) {}^{n} \\  = 2 {}^{n}

Similar questions