show that 1 minus sin 60 degree by Cos 60 degree = tan 60 degree minus 1 by tan 60 degree + 1
Answers
Answered by
1
(1 - sin 60)/cos 60 = (tan 60 - 1)/(tan 60 + 1) ——> 1
We know that
sin 60 = sqrt(3)/2 ——> 2
cos 60 = 1/2 ——> 3
tan 60 = sqrt(3) ——> 4
Substitute 2, 3 & 4 in equation 1,
(1-(sqrt(3)/2))/(1/2) = (sqrt(3) - 1)/(sqrt(3) + 1)
(2 - sqrt(3)) = ((sqrt(3) - 1)*(sqrt(3) - 1))/((sqrt(3) + 1)* (sqrt(3) - 1))
(2 - sqrt(3)) = (sqrt(3) - 1)^2/((sqrt(3) + 1)* (sqrt(3) - 1))
(2 - sqrt(3)) = (sqrt(3) - 1)^2/(3 - 1)
(2 - sqrt(3)) = (3 + 1 - 2*sqrt(3)*1)/(2)
(2 - sqrt(3)) = (4 - 2*sqrt(3))/(2)
(2 - sqrt(3)) = 2*(2 - sqrt(3))/(2)
(2 - sqrt(3)) = (2 - sqrt(3))
L. H. S = R. H. S
Hence Proved
We know that
sin 60 = sqrt(3)/2 ——> 2
cos 60 = 1/2 ——> 3
tan 60 = sqrt(3) ——> 4
Substitute 2, 3 & 4 in equation 1,
(1-(sqrt(3)/2))/(1/2) = (sqrt(3) - 1)/(sqrt(3) + 1)
(2 - sqrt(3)) = ((sqrt(3) - 1)*(sqrt(3) - 1))/((sqrt(3) + 1)* (sqrt(3) - 1))
(2 - sqrt(3)) = (sqrt(3) - 1)^2/((sqrt(3) + 1)* (sqrt(3) - 1))
(2 - sqrt(3)) = (sqrt(3) - 1)^2/(3 - 1)
(2 - sqrt(3)) = (3 + 1 - 2*sqrt(3)*1)/(2)
(2 - sqrt(3)) = (4 - 2*sqrt(3))/(2)
(2 - sqrt(3)) = 2*(2 - sqrt(3))/(2)
(2 - sqrt(3)) = (2 - sqrt(3))
L. H. S = R. H. S
Hence Proved
Similar questions