Math, asked by daisyhemington, 3 months ago

show that : 1/(sec a + tan a) = sec a - tan a​

Answers

Answered by TheBrainlistUser
6

\large\underline\mathfrak\red{Given \:  :- }

\sf{ \frac{1}{ \sec a +  \tan a   }  =  \sec a -  \tan a} \\

\large\underline\mathfrak\red{To  \: Prove  \: :- }

  • LHS = RHS

\large\underline\mathfrak\red{Proof  \: :- }

\sf{ \frac{1}{ \sec a +  \tan a }  = RHS} \\

\sf{ \frac{1}{ \sec a +  \tan a } \times  \frac{\sec a  -   \tan a}{\sec a  -   \tan a}  =RHS  } \\

\sf{1 \times  \sec a -  \tan a =RHS}

\sf{  \sec a -  \tan a =RHS}

\sf\therefore{LHS = RHS}

{\large{\underline{\underline{\bf{\red{Hence  \: Proved  \: ! }}}}}}

Answered by Anonymous
1

Given,

  • 1/(secA + tanA) = secA - tanA

To Proof,

  • 1/(secA + tanA) = secA - tanA

Proof,

1/(secA + tanA) = secA - tanA

→ 1/(secA + tanA) × (secA - tanA)/(secA - tanA) = secA - tanA

→ (secA - tanA)/(sec²A - tan²A) = secA - tanA

[sec²A - tan²A = 1]

→ (secA - tanA)/(1) = secA - tanA

→ secA - tanA = secA - tanA

L.H.S. = R.H.S.

••••••••••••••••••Hence Proved,

Similar questions