show that : 1/(sec a + tan a) = sec a - tan a
Answers
Answered by
6
- LHS = RHS
Answered by
1
Given,
- 1/(secA + tanA) = secA - tanA
To Proof,
- 1/(secA + tanA) = secA - tanA
Proof,
1/(secA + tanA) = secA - tanA
→ 1/(secA + tanA) × (secA - tanA)/(secA - tanA) = secA - tanA
→ (secA - tanA)/(sec²A - tan²A) = secA - tanA
[sec²A - tan²A = 1]
→ (secA - tanA)/(1) = secA - tanA
→ secA - tanA = secA - tanA
→ L.H.S. = R.H.S.
••••••••••••••••••Hence Proved,
Similar questions