show that 1+seco /seco =sin²o/1-coso
Answers
Answered by
6
Step-by-step explanation:
To show--->
( 1 + Secθ ) / Secθ = Sin²θ / ( 1 - Cosθ )
Proof--->
LHS = ( 1 + Secθ ) / Secθ
We know that, Secθ = 1 / Cosθ , using it here, we get,
= { 1 + ( 1 / Cosθ ) } / 1 / Cosθ
= Cosθ ( Cosθ + 1 ) / Cosθ
Multiplying in numerator and denominator by
( 1 - Cosθ ) , we get
= ( Cosθ + 1 ) ( 1 - Cosθ ) / ( 1 - Cosθ )
We have an identity ( a² - b² ) = ( a + b ) ( a - b ) , applying it here, we get,
= { ( 1 )² - ( Cosθ )² } / ( 1 - Cosθ )
= ( 1 - Cos²θ ) / ( 1 - Cosθ )
We know that, Sin²θ = 1 - Cos²θ , we get,
= Sin²θ / ( 1 - Cosθ ) = RHS
Similar questions