Math, asked by yuvasaiyuvasai75, 11 months ago

show that 1/secx - tanx - 1/cosx = 1/cosx - 1/secx + tanx

Answers

Answered by waqarsd
2

Answer:

\frac{1}{secx-tanx}-\frac{1}{cosx}=\frac{1}{cosx}-\frac{1}{secx+tanx}

Step-by-step explanation:

WKT

sec^2x-tan^2x=1\\\\(secx-tanx)(secx+tanx)=1\\

Now

\frac{1}{secx-tanx}-\frac{1}{cosx}\\\\secx=\frac{1}{cosx}\\\\\frac{secx+tanx}{(secx-tanx)(secx+tanx)}-\frac{1}{cosx}\\\\secx+tanx-secx\\\\secx-(secx-tanx)\\\\\frac{1}{cosx}-\frac{(secx-tanx)(secx+tanx)}{secx+tanx}\\\\\frac{1}{cosx}-\frac{1}{secx+tanx}

Hope It Helps

Answered by sandy1816
0

 \frac{1}{secx - tanx}  -  \frac{1}{cosx}  \\  \\  = secx + tanx - secx \\  \\  = secx - (secx - tanx) \\  \\  =  \frac{1}{cosx}  -  \frac{1}{secx + tanx}

Similar questions