Math, asked by eswardhoni99, 8 months ago

show that √1+sin∆÷1-sin∆=sec∆+tan∆​

Answers

Answered by BrainlyPopularman
21

TO PROVE :

 \bf \implies  \sqrt{ \dfrac{1 +  \sin( \triangle) }{1 -  \sin( \triangle) }}  =  \sec( \triangle)  +  \tan( \triangle)

SOLUTION :

• Let's take L.H.S. –

 \bf  \:  \:  =  \sqrt{ \dfrac{1 +  \sin( \triangle) }{1 -  \sin( \triangle) }}

• Now rationalization of denominator –

 \bf  \:  \:  =  \sqrt{ \dfrac{1 +  \sin( \triangle) }{1 -  \sin( \triangle) } \times  \dfrac{1 +  \sin( \triangle) }{1 +  \sin( \triangle)}}

 \bf  \:  \:  =  \sqrt{ \dfrac{ \{1 +  \sin( \triangle) \}^{2} }{ \{1 -  \sin( \triangle) \} \{1 +  \sin( \triangle)\} }}

 \bf  \:  \:  =  \sqrt{ \dfrac{\{1 +  \sin( \triangle) \}^{2} }{ {(1)}^{2}  -  \sin^{2} ( \triangle)}}

 \bf  \:  \:  =  \sqrt{ \dfrac{\{1 +  \sin( \triangle) \}^{2}}{1 -  \sin^{2} ( \triangle)}}

 \bf  \:  \:  =  \sqrt{ \dfrac{\{1 +  \sin( \triangle) \}^{2}}{\cos^{2} ( \triangle)}}

 \bf  \:  \:  =  \dfrac{1 +  \sin( \triangle) }{\cos ( \triangle)}

• We should write this as –

 \bf  \:  \:  =  \dfrac{1}{\cos ( \triangle)} +  \dfrac{\sin( \triangle) }{\cos ( \triangle)}

 \bf  \:  \:  =   \sec ( \triangle)+   \tan( \triangle)

 \bf  \:  \:  = R.H.S.

 \bf  \:  \: \:  \:  \:  \:  \:  { \underbrace{ Hence \:  \: proved}}

Similar questions