Math, asked by manikanta8989, 3 months ago

show that √1+sin A\1-sin A=sec A+tan A (0°<0<90°)​

Answers

Answered by Anonymous
25

Solution -

We have,

  • \sf{\sqrt{\dfrac{1 + sinA}{1 - sinA}} = secA + tanA}

Taking L.H.S

\tt\longrightarrow{\sqrt{\dfrac{1 + sinA}{1 - sinA}}}

Rationalising the denominator

\tt\longrightarrow{\sqrt{\dfrac{(1 + sinA)}{(1 - sinA)} \times \dfrac{(1 + sinA)}{(1 + sinA)}}}

\tt\longrightarrow{\sqrt{\dfrac{(1 + sinA)^2}{1 - sin^2A}}}

\tt\longrightarrow{\sqrt{\dfrac{(1 + sinA)^2}{cos^2A}}}

\tt\longrightarrow{\dfrac{1 + sinA}{cosA}}

\tt\longrightarrow{\dfrac{1}{cosA} + \dfrac{sinA}{cosA}}

\tt\longrightarrow{secA + tanA}

\tt\longrightarrow{R.H.S}

⇢ L.H.S = R.H.S

HENCE PROVED

Similar questions