Show that √[(1 + sin A) / (1 − sin A) ]= sec A + tan A
Answers
Answered by
12
Hi ,
LHS = √ ( 1 + sinA )/( 1 - sinA )
= √[(1 + sinA)(1 + sinA)/(1 - sinA)(1 + sinA)]
= √ ( 1 + sinA )² / ( 1² - sin²A )
= √ ( 1 + sinA )² /( 1 - sin² A )
= √ ( 1 + sinA )² / cos² A
= ( 1 + sinA )/cosA
= 1/cosA + sinA/cosA
= secA + tanA
= RHS
I hope this helps you.
: )
LHS = √ ( 1 + sinA )/( 1 - sinA )
= √[(1 + sinA)(1 + sinA)/(1 - sinA)(1 + sinA)]
= √ ( 1 + sinA )² / ( 1² - sin²A )
= √ ( 1 + sinA )² /( 1 - sin² A )
= √ ( 1 + sinA )² / cos² A
= ( 1 + sinA )/cosA
= 1/cosA + sinA/cosA
= secA + tanA
= RHS
I hope this helps you.
: )
Similar questions