Math, asked by VKTPROViveK, 9 months ago

show that : (1-sin A+ cos A) =2 (1 -sin A) (1 + Cos A)​

Answers

Answered by Mehtasaab97
1

Hi,

LHS

=

[(1+ sinA - cosA) /

(1+ sinA + cosA)]²

according to identity ,

(a+b-c)² = a²+b²+c²+2ab-2bc-2ac

=( 1 + sin²A + cos²A + 2sinA - 2sinA.cosA - 2cosA ) /

( 1 + sin²A + cos²A + 2sinA + 2sinA.cosA + 2cosA)

=( 1 + 1 + 2sinA - 2cosA - 2sinA.cosA ) /

( 1 + 1 + 2sinA + 2cosA + 2sinA.cosA)

=( 2 + 2sinA - 2cosA - 2sinA.cosA ) /

( 2 + 2sinA + 2cosA + 2sinA.cosA)

=2( 1 + sinA - cosA - sinA.cosA ) /

2( 1 + sinA + cosA + sinA.cosA)

=( 1 + sinA - cosA - sinA.cosA ) /

( 1 + sinA + cosA + sinA.cosA)

=[ 1(1 + sinA) -cosA(1 + sinA) ] /

[ 1(1 + sinA) +cosA(1 + sinA)]

=[ (1 - cosA)(1 + sinA) ] /

[ (1 + cosA)(1 + sinA)]

=( 1 - cosA ) / = RHS ,hence proved

( 1 + cosA)

Thank You☺️

Answered by Anonymous
4

Transformation of sum or difference into product

Transformation formulae Key to remember

2 cosA sinB = sin(A + B) - sin(A - B) 2 cos. sin = sin - sin

2 cosA cosB = cos(A + B) + cos(A - B) 2 cos. cos = cos + cos

2 sinnA sinB = cos (A - B) - cos(A + B) 2 sin. sin = cos - cos.

✔Okk

Similar questions