Math, asked by tulasammahulikal, 4 months ago

show that ( 1 - sin2 A ) ( 1 + tan 2 A ) = 1​

Answers

Answered by kevhan
1

Answer:

( 1 - sin^2 A ) ( 1 + tan^2 A ) = 1

Identities to know

1-sin^2A = cos^2A

tan^2A = \frac{sin^2A}{cos^2A}

cos^2A +sin^2A = 1

Rewrite equation in terms of sin and cos

(1-sin^2A)(1+sin^2A/cos^2A)

Now Multiply

1 + (sin^2A/cos^2A) - sin^2A -(sin^4A/cos^2A)

Rearrange  sin^2A to get the cos identity

1-sin^2A +(sin^2A/cos^2A) - (sin^4A/cos^2A)

cos^2A +(sin^2A/cos^2A) - (sin^4A/cos^2A)

combine terms with cos^2A as the denominator

cos^2A +(sin^2A-sin^4A/cos^2A)

Factor out sin

cos^2A +sin^2A(1-sin^2A/cos^2A)

cos^2A +sin^2A(cos^2A/cos^2A)

cos^2A +sin^2A = 1

Similar questions