Math, asked by binduraju27, 3 months ago

show that ( 1 + sinA/cosA × sinB/cosB) ² + ( sinA/cosA - sinB/cosB) ² = 1/cos²A.cos²B

pls answer soon as I am having preboard this week

I would prefer hand written answer than typed one

pls help by answering the above question​

Answers

Answered by sanjay1507
0

Answer:

use sin/cos = tan then answer is very easy from there..

Answered by ashmitkumar2
1

Step-by-step explanation:

 {(1 +  \frac{ \sin( \alpha ) }{ \cos( \alpha )  }  \times   \frac{ \sin( \beta ) }{ \cos( \beta ) } )}^{2}  +  {( \frac{ \sin( \alpha ) }{ \cos(  \alpha ){} }  -  \frac{ \sin( \beta ) }{ \cos( \beta ) }  )}^{2}  \\  \\  {(1 +  \tan( \alpha  )  \tan( \beta ) )}^{2}  +  {( \tan( \alpha )  -  \tan( \beta )) }^{2}  \\  \\ (1 +  { \tan( \alpha ) }^{2}  { \tan( \beta ) }^{2}  + 2 \tan( \alpha )  \tan( \beta )  +  { \tan( \alpha ) }^{2}  +  { \tan( \beta ) }^{2}  - 2 \tan( \alpha )  \tan( \beta ) )  \\  \\ using \: idntity \\ 1 +  { \tan( \alpha ) }^{2}  =  { \sec( \alpha ) }^{2}  \\  \\  \\  \\ so \\  \\ 1 + (1 -  { \sec( \alpha ) }^{2} )(1 -  { \sec(  \beta ) }^{2} ) + 2 -  { \sec( \alpha ) }^{2}  -  { \sec( \beta ) }^{2}  \\ 4  - 2( { \sec( \alpha ) }^{2}  +  { \sec( \beta ) }^{2} ) +  { \sec( \alpha ) }^{2}  { \sec( \beta ) }^{2}  \\  \\

solve it further you will approch yo the answer

I think you are in class 10th if you are instersted then prepare for boards together

Attachments:
Similar questions