Math, asked by kasarlalakshminarsim, 1 month ago

show that [1+tan ^2 A / 1+cot^2]
= [1+tanA/1+cotA]^2= tan^2​

Answers

Answered by sandy1816
0

 \frac{1 +  {tan}^{2} A}{1 +  {cot}^{2} A}  \\  \\  =  \frac{ {sec}^{2} A}{ {cosec}^{2}A }  \\  \\  =  \frac{ {sin}^{2} A}{ {cos}^{2}A }  \\  \\  =  {tan}^{2} A \\  \\  \\ ( { \frac{1 + tanA}{1 + cotA} })^{2}  \\  \\  = ( { \frac{ \frac{cosA + sinA}{cosA} }{ \frac{sinA + cosA}{sinA} } })^{2}  \\  \\  = ( { \frac{sinA}{cosA} })^{2}  \\  \\  =  {tan}^{2} A

Similar questions