Math, asked by rohithdannana156, 10 months ago

show that 1+tan^2A/cot^2A=sec^4A-sec^2A

anyone answer this sum​

Answers

Answered by abhijeet4467
1

Answer:

taking lhs

Sec²/cot²

sin²

taking rhs

sec²(sec²-1)

sec²(tan) ²

sin²

hence proved

Answered by tahseen619
1

To Prove:

\dfrac{1 +  {\tan}^{2}A }{{\cot}^{2}A} =  {\sec }^{4}A  -   {\sec}^{2}A

Solution:

L.H.S

  =\dfrac{1 +  {\tan}^{2} A}{{\cot}^{2}A} \\ \\ [\text{Using(1)}]\\  \\   = \frac{ {  \sec }^{2}A }{ \cot {}^{2} A} \\  \\ [\text{Using(2)}]\\ \\  = { \sec}^{2}A. { \tan }^{2}A  \\  \\  =  { \sec}^{2} A( { \sec}^{2} A - 1) \\  \\  = {\sec}^{4}A  -   {\sec}^{2}A

\therefore L.H.S = R.H.S [Proved]

Used Identity and Rule

sec²@ - tan²@ = 1 ---(1)

tan @ = 1/cot @ ---(2)

Important Trigonometry Identities

sin²@ + cos²@ = 1

cosec²@- cot²@ = 1

Basic Trigonometry Rule

sin @ = 1 /cosec @

cos @ = 1 /sec @

tan @ = 1 /cot @ = sin @/cos @

Similar questions