show that 1+tan squared theta cot squared theta +1
Attachments:
Anonymous:
Please follow me dipak bro
Answers
Answered by
8
Here is urr answer mate!! Hope it helps uhh!!
1+tan²A/1+cot²A
=> sec²A/cosec²A
[1/cosecA=sinA and secA=1/cosA)]
So, sec²A/cosec²A
=> 1/cos²A × sin²A => sin²A/cos²A = tan²A
{as sinA/cosA= tanA)}
1+tan²A/1+cot²A
=> sec²A/cosec²A
[1/cosecA=sinA and secA=1/cosA)]
So, sec²A/cosec²A
=> 1/cos²A × sin²A => sin²A/cos²A = tan²A
{as sinA/cosA= tanA)}
Answered by
0
1+tan²A/1+cot²A
=> sec²A/cosec²A
[1/cosecA=sinA and secA=1/cosA)]
So, sec²A/cosec²A
=> 1/cos²A × sin²A => sin²A/cos²A = tan²A
{as sinA/cosA= tanA)}
=> sec²A/cosec²A
[1/cosecA=sinA and secA=1/cosA)]
So, sec²A/cosec²A
=> 1/cos²A × sin²A => sin²A/cos²A = tan²A
{as sinA/cosA= tanA)}
Similar questions