Math, asked by Anonymous, 5 months ago

Show that :

1-tan² A / cot² A - 1 = tan² A

No Copied Answers !!​​

Answers

Answered by Anonymous
23

Given:

\dfrac{1-{\tan}^2 A}{{\cot}^2 A-1}\:=\:{\tan}^2 A

To Prove:

LHS = RHS

Solution:

We know that ,

\tan \theta = \dfrac{1}{\cos \theta}

 \dfrac{1 -  { \tan}^{2}A }{ { \cot}^{2}A - 1 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \dfrac{1 -  { \tan}^{2}A }{ \dfrac{1}{ { \tan }^{2}A } - 1 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \\  \dfrac{1 -  { \tan}^{2} A}{ \dfrac{1 -  { \tan}^{2} A}{ { \tan}^{2}A } }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\  \dfrac{1 -  { \tan}^{2}A }{1 -  { \tan }^{2}A }  \times  { \tan}^{2} A \\  \\  { \tan }^{2} A \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \mathfrak{hence \: proved} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Hope it helps u

Have a great day ahead

Answered by UnknownTushi69
7

Answer:

Hey Brainly User !

_______________________________________

As we know that,cotA = 1/tanA. _______________________________________

L.H.S = (1 - tan²A)/(cot²A - 1) = tan²A

= (1 - tan²A)/[(1/tan²A - 1/1)] = tan²A

= (1 - tan²A)/[(1/tan²A)]/tan²A)]

After Cancellation,

tan²A = tan²A

L.H.S = R.H.S

Hence Proved.

I hope it helps.

:)

Similar questions