Math, asked by Legend42, 5 months ago

Show that: 1 + tan2(x) = sec2(x) ​


dixudeekshita: I can be your friend
dixudeekshita: bestie
dixudeekshita: say plz
anushka286231: inbox
anushka286231: me
anushka286231: plz
dixudeekshita: wt
dixudeekshita: what
dixudeekshita: why
dixudeekshita: hi

Answers

Answered by Anonymous
37

\large{\underline{\underline{\bf{\red{AnsWer - :}}}}}

tan(x) \: = \: \frac{sin(x)}{cos(x)}

        and

sec(x) \: = \: \frac{1}{cos(x)}

      so \: you \: get \:

1\: + \: \frac{sin^{2}(x) }{cos^{2}(x)}

        rearranging

\frac{cos^{2}(x)\: + \: sin^{2}(x) }{(cos^{2}(x)) } \: = \frac{1}{(cos^{2}(x)) }

     cancel \: denominators

so\: that : \:cos^{2} (x) \:+ \: sin^{2} (x) \: = \: 1 \: which \: is  \:  true


jangirsomdutt5: thank u di for the solution
Anonymous: u r most welcome !! :)
Answered by Anonymous
5

\huge\bold\color{blue}{answer:-}

cos^2(x)+sin^2(x)=1

Divide both sides by cos2(x) to get:

cos^2(x)/cos^2(x)+sin^2(x)/cos^2(x)=1/cos2(x)

which simplifies to:

1+tan2(x)=sec2(x)

Similar questions