English, asked by Anonymous, 3 months ago

Show that: 1 + tan2(x) = sec2(x)



☆Good afternoon☆​

Answers

Answered by Anonymous
22

Answer:

\huge{\bf{\underline{\red{Solution :}}}}

\rightarrowcos²(x)+ sin²(x) = 1

Divide both sides by \boxed{\orange{cos²(x)}} to get:

\Large\frac{cos²(x)}{cos²(x)}  +  \frac{sin²(x)}{cos²(x)}  =  \frac{1}{cos²(x)}

Which simples to,

\boxed{\red{1 + tan²(x) = sec²(x)}}

Answered by llMrIncrediblell
1051

\large{\underbrace{\sf{\red{ Correct \: Question :- }}}}

Show that : 1 + tan²(x) = sec²(x)

\huge\pink{\mid{{\tt{Solution}}\mid}}

  \tt \purple{TO \:  PROVE :}

1 + tan²(x) = sec²(x)

  \tt \red{IDENTITY  \: USED : }

cos²(x) + sin²(x) = 1

cot²(x) = 1 + tan²(x)

 \tt \pink{PROOF : }

As we know,

cos²(x) + sin²(x) = 1

Dividing the equation [cos²(x) + sin²(x) = 1] by cos²(x), we get :-

  \tt \implies\frac{cos²(x)}{cos²(x)} +  \frac{sin²(x)}{cos²(x)}  =  \frac{1}{cos²(x)}

  \tt \implies \cancel\frac{cos²(x)}{cos²(x)} +  \frac{sin²(x)}{cos²(x)}  =  \frac{1}{cos²(x)}

  \tt \implies   \frac{sin²(x)}{cos²(x)}  =  \frac{1}{cos²(x)}

As we know   \tt  \frac{sin²(x)}{cos²(x)} \:   =  {cot}^{2} (x) and  \tt\frac{1}{cos²(x)} \:  =  {sec}^{2} (x)

so by substituting these value we get :-

  \tt \implies    {cot}^{2}(x)  =   {sec}^{2}(x)

As we know, cot²(x) = 1 + tan²(x),so substituting 1 + tan²(x) in place of cot²(x) we get :-

 \tt \implies \: 1 + tan(x) =  {sec}^{2} (x)

HENCE PROVED :)

Similar questions