Math, asked by yovelapogulp037mt, 11 months ago

show that 1-tan²A/cot²A-1=tan²A​

Answers

Answered by itzJitesh
1

Answer:

this question is very simple dude okkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Answered by mbanwieleslie7
4

Answer:

True

Step-by-step explanation:

Proving that   (〖1-tan〗^2 A)/(〖cot〗^2 A-1)= 〖tan〗^2 A  

(1-〖tan〗^2 A)= 1-  (〖sin〗^2 A)/(〖Cos〗^2 A)  

1-  (〖sin〗^2 A)/(〖Cos〗^2 A)=  ( cos^2⁡A-sin^2⁡A)/cos^2⁡A      ……eqn (1)

〖cot〗^2⁡A-1=〖cos〗^2⁡A/〖sin〗^2⁡A -1

〖cos〗^2⁡A/〖sin〗^2⁡A -1=(〖cos〗^2⁡A-〖sin〗^2⁡A)/〖sin〗^2⁡A       ……… eqn(2)

((〖cos〗^2⁡A-〖sin〗^2⁡A)/〖cos〗^2⁡A )/((〖cos〗^2⁡A-〖sin〗^2⁡A)/〖sin〗^2⁡A )=〖tan〗^2⁡A    ………. Combining (1) and (2)

Hence task has been proven true.

Attachments:
Similar questions