show that 1-tan²A/cot²A-1=tan²A
Answers
Answered by
1
Answer:
this question is very simple dude okkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Answered by
4
Answer:
True
Step-by-step explanation:
Proving that (〖1-tan〗^2 A)/(〖cot〗^2 A-1)= 〖tan〗^2 A
(1-〖tan〗^2 A)= 1- (〖sin〗^2 A)/(〖Cos〗^2 A)
1- (〖sin〗^2 A)/(〖Cos〗^2 A)= ( cos^2A-sin^2A)/cos^2A ……eqn (1)
〖cot〗^2A-1=〖cos〗^2A/〖sin〗^2A -1
〖cos〗^2A/〖sin〗^2A -1=(〖cos〗^2A-〖sin〗^2A)/〖sin〗^2A ……… eqn(2)
((〖cos〗^2A-〖sin〗^2A)/〖cos〗^2A )/((〖cos〗^2A-〖sin〗^2A)/〖sin〗^2A )=〖tan〗^2A ………. Combining (1) and (2)
Hence task has been proven true.
Attachments:
Similar questions