Math, asked by khushiagrawal0004, 11 months ago

show that 1 upon 1 + root 2 + 1 upon root 2 + root 3 is equals to minus 1 root 3​

Answers

Answered by panditji017389
1

Step-by-step explanation:

this is ur answer

see the photo

Attachments:
Answered by gbeena704
2

Answer:

Given:

\frac{1}{1+\sqrt 2}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{8}+\sqrt{9}}

1+

2

1

+

2

+

3

1

+....+

8

+

9

1

To find:

Value of \frac{1}{1+\sqrt 2}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{8}+\sqrt{9}}

1+

2

1

+

2

+

3

1

+....+

8

+

9

1

Solution:

By rationalization

\frac{1}{1+\sqrt 2}\times \frac{\sqrt{2}-1}{\sqrt{2}-1}+\frac{1}{\sqrt{2}+\sqrt{3}}\times \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}+....+\frac{1}{\sqrt{8}+\sqrt{9}}\times \frac{\sqrt{9}-\sqrt{8}}{\sqrt{9}-\sqrt{8}}

1+

2

1

×

2

−1

2

−1

+

2

+

3

1

×

3

2

3

2

+....+

8

+

9

1

×

9

8

9

8

\frac{\sqrt{2}-1}{(\sqrt{2})^2-1}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3})^2-(\sqrt{2})^2}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4})^2-(\sqrt{3})^2}+....\frac{\sqrt{9}-\sqrt{8}}{(\sqrt{9})^2-(\sqrt{8})^2}

(

2

)

2

−1

2

−1

+

(

3

)

2

−(

2

)

2

3

2

+

(

4

)

2

−(

3

)

2

4

3

+....

(

9

)

2

−(

8

)

2

9

8

Using identity:

(a+b)(a-b)=a^2-b^2(a+b)(a−b)=a

2

−b

2

\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+\frac{\sqrt{5}-\sqrt{4}}{5-4}+\frac{\sqrt{6}-\sqrt{5}}{6-5}+\frac{\sqrt{7}-\sqrt{6}}{7-6}+\frac{\sqrt{8}-\sqrt{7}}{8-7}+\frac{\sqrt{9}-\sqrt{8}}{9-8}

2−1

2

−1

+

3−2

3

2

+

4−3

4

3

+

5−4

5

4

+

6−5

6

5

+

7−6

7

6

+

8−7

8

7

+

9−8

9

8

\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+\sqrt{5}-\sqrt{4}+\sqrt{6}-\sqrt{5}+\sqrt{7}-\sqrt{6}+\sqrt{8}-\sqrt{7}+\sqrt{9}-\sqrt{8}

2

−1+

3

2

+

4

3

+

5

4

+

6

5

+

7

6

+

8

7

+

9

8

=-1+3=−1+3

=2=2

\frac{1}{1+\sqrt 2}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{8}+\sqrt{9}}=2

1+

2

1

+

2

+

3

1

+....+

8

+

9

1

=2

Step-by-step explanation:

done

Similar questions