English, asked by abhisek2001bag, 3 months ago

Show that 13 is not rational​

Answers

Answered by abhijeetpande
1

Answer:

The rational root theorem guarantees its roots aren't rational and since √13 is a root of the polynomial, it is irrational. Let √p=mn where m,n∈N. and m and n have no factors in common. So mn can not exist and the square root of any prime is irrational.

Answered by llSᴡᴇᴇᴛHᴏɴᴇʏll
6

ᴀɴsᴡᴇʀ ⤵️

➡️ᴛʜᴇ ʀᴀᴛɪᴏɴᴀʟ ʀᴏᴏᴛ ᴛʜᴇᴏʀᴇᴍ ɢᴜᴀʀᴀɴᴛᴇᴇs ɪᴛs ʀᴏᴏᴛs ᴀʀᴇɴ'ᴛ ʀᴀᴛɪᴏɴᴀʟ ᴀɴᴅ sɪɴᴄᴇ √13 ɪs ᴀ ʀᴏᴏᴛ ᴏғ ᴛʜᴇ ᴘᴏʟʏɴᴏᴍɪᴀʟ, ɪᴛ ɪs ɪʀʀᴀᴛɪᴏɴᴀʟ. ʟᴇᴛ √ᴘ=ᴍɴ ᴡʜᴇʀᴇ ᴍ,ɴ∈ɴ. ᴀɴᴅ ᴍ ᴀɴᴅ ɴ ʜᴀᴠᴇ ɴᴏ ғᴀᴄᴛᴏʀs ɪɴ ᴄᴏᴍᴍᴏɴ. sᴏ ᴍɴ ᴄᴀɴ ɴᴏᴛ ᴇxɪsᴛ ᴀɴᴅ ᴛʜᴇ sϙᴜᴀʀᴇ ʀᴏᴏᴛ ᴏғ ᴀɴʏ ᴘʀɪᴍᴇ ɪs ɪʀʀᴀᴛɪᴏɴᴀʟ.

ItzNaziya ✌️✌️✌️

Similar questions