Show that 13 is the only prime that divides two successive integers of the form n
^2 + 3
Answers
Answered by
2
Answer:
Let an=n2+3. If p|an then n2=−3(modp).
A quick calculation shows that an+1−an=2n+1 so if p also divides an+1 we must have 2n=−1(modp). Square this to see that it implies 4n2=1⟹−12=1(modp). Thus, p|13 and we are done.
Answered by
0
Answer:
hope it is helpful to you
please mark the brainliest answer
Attachments:
Similar questions