Math, asked by benniliu8, 1 month ago

Show that (2, 1) is the centre of the circumcircle of the triangle whose vertices are (-3, -9), (13, -1) and (-9,3)​

Answers

Answered by suhail2070
2

Answer:

hence \:  \:  \: p(2 \:  \:  \:  \: 1) \: is \: circumcenter \: of \: triangle \: abc.

Step-by-step explanation:

let \:  \:  \:  \:  \:  \: a( - 3 \:  \:  \:  \:  - 9) \:  \:  \:  \:  \:  \:  \: b(13 \:  \:  \:  \:  - 1) \:  \:  \:  \:  \:  \:  \:  \: c( - 9 \:  \:  \:  \: 3) \:  \:  \: and \:  \:  \:  \: p(2 \:  \:  \:  \: 1) \\  \\ then \:  \:  \:  \: ap =  \sqrt{ {(2 + 3)}^{2}  +  {(1 + 9)}^{2} }  \\  \\  =  \sqrt{25 + 100}  \\  \\  =  \sqrt{125}  \\  \\  \\ bp =  \sqrt{ {(13 - 2)}^{2} +  {(1 + 1)}^{2}  }  \\  \\  =  \sqrt{121 + 4}  \\  \\  =  \sqrt{125}  \\  \\  \\ cp =  \sqrt{ {(2 + 9)}^{2} +  {(3 - 1)}^{2}  }  \\  \\  =  \sqrt{125} =  \\  \\ therefore \:  \:  \: ap = bp = cp =  \sqrt{125}=RADIUS. \\  \\ p \: is \: equidistant \: from \: a \:  \: b \:  \:  \: and \:  \:  \: c. \\  \\ hence \:  \:  \: p(2 \:  \:  \:  \: 1) \: is \: circumcenter \: of \: triangle \: abc.

Similar questions