show that 2(a2+b2)=(a+b)2 , then a=b
Answers
Answered by
5
Given Equation is :
= > 2(a^2 + b^2) = (a + b)^2
= > 2a^2 + 2b^2 = a^2 + b^2 +2ab
= > 2a^2 + 2b^2 - a^2 - b^2 - 2ab = 0
= > a^2 + b^2 - 2ab = 0
= > (a - b)^2 = 0
= > a = b.
Hope this helps!
= > 2(a^2 + b^2) = (a + b)^2
= > 2a^2 + 2b^2 = a^2 + b^2 +2ab
= > 2a^2 + 2b^2 - a^2 - b^2 - 2ab = 0
= > a^2 + b^2 - 2ab = 0
= > (a - b)^2 = 0
= > a = b.
Hope this helps!
siddhartharao77:
:-)
Answered by
7
Hi ,
It is given that ,
2( a² + b² ) = ( a + b )²
2a² + 2b² - ( a + b )² = 0
2a² + 2b² - ( a² + b² + 2ab ) = 0
2a² + 2b² - a² - b² - 2ab = 0
a² + b² - 2ab = 0
( a - b )² = 0
Therefore ,
a - b = 0
a = b
I hope this helps you.
: )
It is given that ,
2( a² + b² ) = ( a + b )²
2a² + 2b² - ( a + b )² = 0
2a² + 2b² - ( a² + b² + 2ab ) = 0
2a² + 2b² - a² - b² - 2ab = 0
a² + b² - 2ab = 0
( a - b )² = 0
Therefore ,
a - b = 0
a = b
I hope this helps you.
: )
Similar questions