Math, asked by shwetanshu1, 1 year ago

Show that 2(cos^460+sin^430)-(tan ^260+cot^2 45)+3sec^2 30=1/4

Answers

Answered by anuritha
17
hope this answer helps you
Attachments:
Answered by pinquancaro
18

Step-by-step explanation:

To show : 2(\cos^4 60+\sin^4 30)-(\tan^2 60+\cot^2 45)+3\sec^2 30=\frac{1}{4}

Solution :

Taking LHS,

LHS=2(\cos^4 60+\sin^4 30)-(\tan^2 60+\cot^2 45)+3\sec^2 30

Using trigonometric values,

\cos 60=\frac{1}{2}

\sin 30=\frac{1}{2}

\tan 60=\sqrt3

\cot 45=1

\sec 30=\frac{2}{\sqrt3}

Substitute all values,

LHS=2((\frac{1}{2})^4+(\frac{1}{2})^4)-((\sqrt3)^2+(1)^2)+3(\frac{2}{\sqrt3})^2

LHS=2(\frac{1}{16}+\frac{1}{16})-(3+1)+3(\frac{4}{3})

LHS=2(\frac{2}{16})-(4)+4

LHS=\frac{1}{4}

LHS=RHS

Hence proved.

#Learn more

Evaluate 2cos 2 60+3sec 2 30-2 tan 2 45 / sin 2 30 +cos 2 45

https://brainly.in/question/751089

Similar questions