Math, asked by myakalalaxman75, 10 months ago

show that √2 is a irrational number​

Answers

Answered by Anonymous
50

AnswEr :

\normalsize\sf\ Let \: \red{\sqrt{2}} \; be \: a \: rational \: number

\normalsize\sf\ As; \: we \: know \: Rational \: number \: is \: in \: form \: of \: \green{\frac{p}{q}}

\normalsize\dashrightarrow\sf\red{\sqrt{2} } = \green{\frac{a}{b}}

\normalsize\quad\sf\ [\because\ a \: and \: b \: are \: co-prime \: and \: b \: \neq\ \: 0]

\underline{\bigstar\:\textsf{Squaring \: both \: sides( L.H.S \& R.H.S):}}

\normalsize\ : \implies\sf\ (\sqrt{2})^2 = \left[\frac{p}{q} \right]^2

\normalsize\ : \implies\sf\ 2  = \frac{a^2}{b^2}

\normalsize\ : \implies\sf\ a^2 = 2b^{2} \: \: ---(eq.1)

\normalsize\ : \implies\sf\frac{a^2}{2} = b^{2}

\normalsize\sf\ \therefore\ a^{2} \: is \: divisible \: by \: 2 \: and \: a \: is \: also \: divisible \: by \: 5

 \rule{170}1

\normalsize\sf\ Now;

\normalsize\: \implies\sf\ a = 2c

\normalsize\qquad\sf\ [\because\ Where \: k \: is \: an \: integer]

\underline{\bigstar\:\textsf{Squaring \: both \: sides( L.H.S \& R.H.S):}}

\normalsize\ : \implies\sf\ a^2 = (2c)^{2}

\scriptsize\tt{\quad\dag\ put \: the \: value \: of \: b^2 \: from \: eq.1}

\normalsize\ : \implies\sf\ \cancel{2}b^2 = \cancel{4}c^{2}

\normalsize\ : \implies\sf\ b^2 = 2c^{2}

\normalsize\ : \implies\sf\frac{b^2}{2} = c^{2}

\normalsize\sf\ \therefore\ b^{2} \: is \: divisible \: by \: 2 \: and \: b \: is \: also \: divisible \: by \: 5

\normalsize\sf\ This \: shows \: that \: \green{a} \: and \: \green{b} \: have \: common \: factor \: as \: 5 \\ \normalsize\sf\ but \: if \: they \: are \: \blue{rational} \: they \: are \: \pink{co-prime}.

\normalsize\sf\ This \: contradicts \: the \: fact \: that \: \red{\sqrt{2}} \: is \: \blue{rational}

\normalsize\sf\ Hence, \: Our \: assumption \: is \: wrong \: \\ \normalsize\sf\ \red{\sqrt{2}} \: is \: \pink{irrational}

\large\maltese \: \: {\boxed{\sf \orange{Hence \: Prove \: !!}}}


BrainlyConqueror0901: well explained : )
SnowySecret72: Great:)
Rythm14: Noice dolly ;)
Answered by HeAvEnPrlnCesS
16

Let us assume that √2 is a rational number.

So it will be expressed in the form of  \red{ \frac{p}{q} }

Where q is not equal to 0.

Here p and q are co primes whose HCF is 1.

 { \red{\sqrt{2}  =  \frac{p}{q} }}

Squaring both sides, we get

2 =   \frac{ {p}^{2} }{ \ {q}^{2}  }   \\ \implies2 {q }^{2} =  {p}^{2}  ........(1) \\  \implies \: 2 \: divides \:  {p}^{2}  \\  \implies \: 2 \: divides \: p

Here 2 divides p.

Now let p= 2c

Squaring both sides,

  {p}^{2}  = 4 {c}^{2} .......(2)

Substituting (1) into (2)

 \implies2 {q}^{2}  = 4c^{2}  \\  \implies \:  {q}^{2}  = 2 {c}^{2}  \\  \implies \: 2 {c}^{2}  =  {q}^{2}

Here 2 divides q² as well as q.

Here p and q are Divisible by 2.

So, our assumption is wrong.

Hence √2 is irrational number.

Similar questions