show that √2 is a irrational number
Answers
Answered by
1
From the equality √2 = a/b it follows that 2 = a2/b2, or a2 = 2 · b2. So the square of a is an even number since it is two times something.
From this we know that a itself is also an even number. Why? Because it can't be odd; if a itself was odd, then a · a would be odd too. Odd number times odd number is always odd. Check it if you don't believe me!
Okay, if a itself is an even number, then a is 2 times some other whole number. In symbols, a = 2k where k is this other number. We don't need to know what k is; it won't matter. Soon comes the contradiction.
If we substitute a = 2k into the original equation 2 = a2/b2, this is what we get:
2=(2k)2/b22=4k2/b22*b2=4k2b2=2k2
This means that b2 is even, from which follows again that b itself is even. And that is a contradiction!!!
WHY is that a contradiction? Because we started the whole process assuming that a/bwas simplified to lowest terms, and now it turns out that a and b both would be even. We ended at a contradiction; thus our original assumption (that √2 is rational) is not correct. Therefore √2 cannot be rational.
From this we know that a itself is also an even number. Why? Because it can't be odd; if a itself was odd, then a · a would be odd too. Odd number times odd number is always odd. Check it if you don't believe me!
Okay, if a itself is an even number, then a is 2 times some other whole number. In symbols, a = 2k where k is this other number. We don't need to know what k is; it won't matter. Soon comes the contradiction.
If we substitute a = 2k into the original equation 2 = a2/b2, this is what we get:
2=(2k)2/b22=4k2/b22*b2=4k2b2=2k2
This means that b2 is even, from which follows again that b itself is even. And that is a contradiction!!!
WHY is that a contradiction? Because we started the whole process assuming that a/bwas simplified to lowest terms, and now it turns out that a and b both would be even. We ended at a contradiction; thus our original assumption (that √2 is rational) is not correct. Therefore √2 cannot be rational.
rohitgangaram:
its very long answer
Answered by
0
√2 is a irrational number as it is terminating decimal number.
√2=1.4141414............
√2=1.4141414............
Similar questions
Computer Science,
6 months ago
Hindi,
6 months ago
Chemistry,
6 months ago
Physics,
1 year ago
Biology,
1 year ago