Math, asked by rroyyalanavyasri, 8 months ago

show that 2 log 5/8 + log 128/125 + log 5/2 =0 ​

Answers

Answered by Unni007
13

Given,

\sf 2 log \dfrac{5}{8} + log \dfrac{128}{125} + log \dfrac{5}{2} =0

Here,

\longrightarrow\sf LHS=2\:log \:\dfrac{5}{8} + log \:\dfrac{128}{125} + log \:\dfrac{5}{2}

\longrightarrow\sf RHS=0

Taking the LHS.

We know,

\longrightarrow\sf log\:\dfrac{a}{b}=log\:a-log\:b

So,

=\sf 2\:log\:5-2\:log\:8+log\:128-log\:125+log\:5-log\:2

\sf=2\:log\:5-2\:log\:2^3+log\:2^7-log\:5^3+log\:5-log\:2

\sf= 3\:log\:5-4\:log\:2-7\:log\:2-3\:log\:5-3\:log\:2

=\sf 3\:log\:\dfrac{5}{5}+7\:log\:\dfrac{2}{2}

=\sf 3\:log\:1+7\:log\:1

We know,

  • log 1 = 0

\sf=3\times0+7\times0

=\sf 0+0

=\sf 0

\sf=RHS

Therefore,

\sf LHS=RHS

\sf 2 log \dfrac{5}{8} + log \dfrac{128}{125} + log \dfrac{5}{2} =0

Hence Proved !!!

Answered by happymind2105
2

Answer:

the answer is absolutely correct.

Similar questions