Math, asked by 918273, 9 months ago

Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2 (α + β) = cos 2α

Answers

Answered by tg655060
0

Answer:

Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2 (α + β) Answer cos 1a

Answered by Anonymous
106

{ \huge{\boxed{\tt {\color{darkblue}{answer}}}}}

LHS = 2 sin2β + 4 cos (α + β) sin α sin β + cos 2(α + β)

= 2 sin2β + 4 (cos α cos β – sin α sin β) sin α sin β + (cos 2α cos 2β – sin 2α sin 2β)

= 2 sin2β + 4 sin α cos α sin β cos β – 4 sin2α sin2β + cos 2α cos 2β – sin 2α sin 2β

= 2 sin2β + sin 2α sin 2β – 4 sin2α sin2β + cos 2α cos 2β – sin 2α sin 2β

= (1 – cos 2β) – (2 sin2α) (2 sin2β) + cos 2α cos 2β

= (1 – cos 2β) – (1 – cos 2α) (1 – cos 2β) + cos 2α cos 2β

= cos 2α

= RHS

Therefore, 2 sin2β + 4 cos (α + β) sin α sin β + cos 2 (α + β) = cos 2α

Hope It's Helpful.....:)

Similar questions