Show that 2 sin2β + 4 cos (α + β) sin α sin β + cos 2 (α+β) = cos 2α.
_________
Answers
Answered by
2
Answer:
= cos 2α
Step-by-step explanation:
LHS
= 2 sin2 β + 4 cos (α + β) sin α sin β + cos 2(α + β)
= 2 sin2 β + 4 (cos α cos β - sin α sin β) sin α sin β
+ (cos 2α cos 2β – sin 2α sin 2β)
= 2 sin2 β + 4 sin α cos α sin β cos β – 4 sin2 α sin2 β + cos 2α cos 2β – sin 2α sin 2α sin 2β
= 2 sin2 β + sin 2α sin 2β – 4 sin2 α sin2 β + cos 2α cos 2β – sin2α sin2β
= (1 – cos 2β) – (2 sin2 α) (2 sin2 β) + cos 2α cos 2β
= (1 – cos 2β) – (1 – cos 2α) (1 – cos 2β) + cos 2α cos 2β
= cos 2α
mark me bainslist please
Similar questions