Math, asked by bhairavi41, 4 months ago

show that 2cos^2theta- 1= Cos theta - Sin theta​

Answers

Answered by suhail2070
0

Answer:

2 { \cos( \alpha ) }^{2}  - 1 = { \cos( \alpha ) }^{2}  -  { \sin( \alpha ) }^{2}

Step-by-step explanation:

2 { \cos( \alpha ) }^{2}  - 1 = 2 { \cos( \alpha ) }^{2}    -   ( { \sin( \alpha ) }^{2}   +  { \cos( \alpha ) }^{2} ) \\  \\  = 2 { \cos( \alpha ) }^{2}   -  { \sin( \alpha ) }^{2}   -   { \cos( \alpha ) }^{2}  \\  \\  =  { \cos( \alpha ) }^{2}  -  { \sin( \alpha ) }^{2}  \\  \\ therefore \:  \:  \:  \:  \:  \: 2 { \cos( \alpha ) }^{2}  - 1 = { \cos( \alpha ) }^{2}  -  { \sin( \alpha ) }^{2}

Similar questions