show that 2power5cos6theta=cos6theta+6cos4theta+15cos2theta+10
Answers
Answered by
0
Step-by-step explanation:
cos6θ+6cos4θ+15cos2θ+10
=(cos6θ+cos4θ)+5(cos4θ+cos2θ)+10(cos2θ+1)
=(2cos(26θ+4θ)cos(26θ−4θ))+5(2cos(24θ+2θ)cos(24θ−2θ))+10(2cos2θ)
=2cos5θcosθ+10cos3θcosθ+20cos2θ
=2(cos5θ+5cos3θ+10cosθ)cosθ
∴cos5θ+5cos3θ+10cosθcos6θ+6cos4θ+15cos2θ+10=2cosθ
Similar questions